

Baffle Plate System Flow Transmitter

for liquids

measuring monitoring analysing

DWD

- Measuring ranges: 1-10 l/min... 360-3600 m³/h water
- Accuracy: ±1.5 of full scale
- Connection: G ¾...G 2. 3/8" NPT ... 2" NPT flange: DN10...DN50 ANSI 3/8"...2" weld-on part for nominal pipe sizes: DN40...DN500
- Material: brass, PVC or stainless steel
- p_{max}: PN25, t_{max}: 120°C

KOBOLD companies worldwide:

ARGENTINA, AUSTRALIA, AUSTRIA, BELGIUM, BULGARIA, CANADA, CHILE, CHINA, COLOMBIA, CZECHIA, EGYPT, FRANCE, GERMANY, GREAT BRITAIN, HUNGARY, INDIA, INDONESIA, ITALY, MALAYSIA, MEXICO, NETHERLANDS, PERU, POLAND, REPUBLIC OF KOREA, ROMANIA, SINGAPORE, SPAIN, SWITZERLAND, TAIWAN, THAILAND, TUNISIA, TURKEY, USA, VIETNAM

KOBOLD Messring GmbH Nordring 22-24 D-65719 Hofheim/Ts. ▲ Head Office: +49(0)6192 299-0 +49(0)6192 23398 info.de@kobold.com www.kobold.com

SS

1

Description

The new KOBOLD measuring instrument type DWD is a flow rate transmitter with digital indication of the actual flow rate, analogue output and two adjustable all-or-nothing relays indicating the switching point for monitoring limit values. An RS232C serial interface is available as an option.

The combination of the proven displacement-deflection measuring technique with the new patented pendulum system and electronic analyser with programmable EEPROM produces a reliable and economical flow transmitter. Due to its modern technology and features this device is also ideally suited for applications where much more expensive methods of measurement have been used up until now.

The flow transmitter type DWD uses the reliable displacement-deflection technique together with new patented technology. The flowing medium presses against a baffle plate that is fastened to a pendulum – thus causing the displacement. The pendulum that is retained by a progressive spring system changes its position without friction and depending on the flow. The position of a magnet attached to the pendulum is sensed by a Hall-effect sensor fixed outside the medium. This signal is processed and evaluated by microchip-based electronics with EEPROM memory.

The devices are calibrated and supplied according to your specifications. Costly adjustments and programming are not required. The DWD is ready for immediate operation. The devices can be re-programmed if necessary. The case can also be adapted easily for the desired mounting position. Numerous connections and materials allow a wide range of applications. Large line cross-sections can also be measured reliably and economically.

Advantages at a Glance

- Ready for operation immediately
- No bearings, no friction
- Only a slightly moving part
- Negligible sensitivity to dirt
- Wider flow range
- Small pressure loss
- Any measuring ranges programmable
- Linear signal

Areas of Application

- Heavy goods industry
- Rolling mills and mill trains
- Chemicals and pharmaceuticals industries
- Food and beverage industry
- General mechanical engineering and capital equipment
- Measuring and monitoring product, cooling and lubricant circuits

Technical Details

	Material combination				
Device part	5	6	7		
Pendulum case	brass	stainless steel	stainless steel		
Pendulum system	stainless steel stainless steel		stainless steel		
T piece	brass	stainless steel	PVC		
Seals	FPM	FPM	FPM		
Connecting thread	brass	stainless steel	PVC		
Connecting flange	steel zinc-plat.	stainless steel	PVC		
Weld-on part	steel	stainless steel	boring pipe box PVC		
Electronics housing	aluminium coated PA 66	aluminium coated PA 66	aluminium coated PA 66		
t _{max} *	120°C	120°C	20 °C (60 °C)		
p _{max} *	25 bar	25 bar	16 bar (2 bar)		

* Higher upon request

Flow range:	flow ratio 1:10 standard
	(for example 10-100 l/min)
	max. 1:25 upon request
Accuracy:	± 1.5 % of full scale
Medium temperature:	-20°C+120°C
	(other ranges upon request)
Max. pressure:	25 bar (higher values upon request)
	16 bar (DWD-17/27/37)
Direction of flow:	any
Analogue output:	010 V or 420 mA
	(switchable)
Switching contacts:	2 x 230 V, 1 A max.,
	adjustable with indication on display
Display:	LCD DOT-matrix module,
	2 x 8 positions
Totaliser:	with EEPROM memory
Power supply:	24 V _{DC} ±10%
Current consumption:	max. 200 mA
Protection type:	IP65
Optional:	RS232C serial interface

Mounting Position

Note the direction of flow marked with an arrow on the device when installing. Otherwise you may use any mounting position as the display/transmitter case and display front panel can be rotated in 90° steps. The device can thus (even if already fitted) be adapted to different mounting positions in the piping, thus convenient reading and operation are always possible.

Example Measuring range:

For connection DN25 min. 6 l/min, max. 60 l/min or any other value upto max. 150 l/min in 1:10 ratio.

Order Details (Example: DWD-15 R10 3 R T 0)

We require the following details as well as the order number: medium, viscosity, service temperature, operating pressure, flow range within the values detailed below with the ratio min/max 1:10

Flow transmitter model DWD-1... with thread connection

Flow (l/r	range nin.)	(pendu	erial combin lum system/	ation T piece)	Connection	Supply	Direction of flow	Location of indicator	Option
min. Water	max. Water	St. steel/ brass	St. steel/ st. steel	St. steel/ PVC					
1	25	DWD-15	DWD-16	DWD-17	R10 = G ³ / ₈ * N10 = ³ / ₈ " NPT*			T = above lead	
1	55	DWD-15	DWD-16	DWD-17	R15 = G1/2* N15 = 1/2" NPT*				
5	100	DWD-15	DWD-16	DWD-17	R20 = G ³ / ₄ * N20 = ³ / ₄ " NPT*				0 – without
6	150	DWD-15	DWD-16	DWD-17	R25 = G1* N25 = 1" NPT*	$3 = 24 V_{DC}$	T = from top to bottom	R = right of lead	7 = RS232C
10	250	DWD-15	DWD-16	DWD-17	R32 = G 1¼* N32 = 1¼" NPT*		B = from bottom to top	L = left of lead	Interface
20	400	DWD-15	DWD-16	DWD-17	R40 = G 1½* N40 = 1½" NPT*				
50	600	DWD-15	DWD-16	DWD-17	R50 = G 2* N50 = 2" NPT*				

*Model DWD-15... female thread to R40, above external thread; Model DWD-16.../DWD-17... female thread to R20, above external thread

Flow transmitter model DWD-2... with flange connection

Flow (l/m	range nin.)	Mate (pendu	erial combin lum system/	ation T piece)	Connection flange	Supply	Direction of flow	Location of indicator	Option	
min. Water	max. Water	St. steel/ brass	St. steel/ st. steel	St. steel/ PVC						
1	25	DWD-25	DWD-26	-	F10 = DN 10 A10 = %" ANSI		\mathbf{R} = from right to left \mathbf{L} = from left to right	T = above lead		
1	55	DWD-25	DWD-26	-	F15 = DN 15 A15 = ½" ANSI					
5	100	DWD-25	DWD-26	-	F20 = DN 20 A20 = ¾" ANSI				0 – without	
6	150	DWD-25	DWD-26	DWD-27	F25 = DN 25 A25 = 1" ANSI	$3 = 24 \ V_{DC}$	T = from top to bottom	R = right of lead	7 = RS232C	
10	250	DWD-25	DWD-26	DWD-27	F32 = DN 32 A32 = 1¼" ANSI		B = from bottom	B = from bottom to top	p L = left of lead	Interface
20	400	DWD-25	DWD-26	DWD-27	F40 = DN 40 A40 = 1½" ANSI					
50	600	DWD-25	DWD-26	DWD-27	F50 = DN 50 A50 = 2" ANSI					

Baffle plate system-flow transmitter DWD-35.../DWD-36... with weld-on part, DWD-37... with boring pipe box

Flow (m	range ³ /h)	Mate (pendulur	erial combin m system/we	ation Id-on part)	For pipe cross-section	Supply	Direction of flow	Location of indicator	Option
min. Water	max. Water	St. steel/ steel	St. steel/ st. steel	St. steel/ PVC					
1.2	24	DWD-35	DWD-36	DWD-37	W40 = DN 40		R = from right to left		
3.0	36	DWD-35	DWD-36	DWD-37	W50 = DN 50		L = from left to right	I = above leau	
4.8	60	DWD-35	DWD-36	DWD-37	W65 = DN 65]
7.2	90	DWD-35	DWD-36	DWD-37	W80 = DN 80				
12	144	DWD-35	DWD-36	DWD-37	W1H = DN100]			
18	225	DWD-35	DWD-36	DWD-37	W1Z = DN125				0 – without
24	330	DWD-35	DWD-36	DWD-37	W1F = DN150	3 = 24 V _{DO}			
42	600	DWD-35	DWD-36	DWD-37	W2H = DN 200		\mathbf{T} = from top to bottom	R = right of lead	interface
72	900	DWD-35	DWD-36	-	W2F = DN 250	B = from bottom to to	50 \mathbf{B} = from bottom to top \mathbf{L} = left of lead	L = left of lead	
102	1200	DWD-35	DWD-36	-	W3H = DN 300				
150	1800	DWD-35	DWD-36	-	W3F = DN 350				
180	2400	DWD-35	DWD-36	-	W4H = DN 400	1			
300	3600	DWD-35	DWD-36	-	W5H = DN 500	1			

Dimensions [mm] DWD-15... to 1½" with female thread

DWD-16... and DWD-17... to 3/4" with female thread

Values in () valid for DWD-16... Values for DWD-17... on request

NW	L [mm]	H [mm]
3⁄8"	50	180
1/2	50	180
3⁄4 "	50	180
1"	50	185 (201)
1¼"	50	190 (201)
1½	50	194 (201)

DWD-15... from 2" with male thread DWD-16... and DWD-17... from 1" with male thread

Values in () valid for DWD-16... Values for DWD-17... on request

NW	L [mm]	H [mm]
1"	135	185 (201)
1¼"	170	190 (201)
1½	170	194 (201)
2	170	202 (211)

DWD-2... with flange

DWD-3... with weld-on part

Values valid for DWD-...35 and 36 Values for DWD-37... on request

NW	H [mm]
from	180
DN 40	

1/08-2017

Values in () valid for DWD-26... Values for DWD-27... on request

-				
DN	D [mm]	K [mm]	L [mm]	H [mm]
10	90	60	155	180
15	95	65	155	180
20	105	75	160	180
25	115	85	160	185 (201
32	140	100	190	190 (201)
40	150	110	190	194 (201)
50	165	125	190	202 (211)